
CS300 Algorithms

Graph Algorithms



What is a graph?

De�nition A graph G consists of a set V (G)

called vertices together with a collection E(G)

of pairs of vertices. Each pair fx; yg 2 E(G) is

called an edge of G.

Example If

V (G) = fA;B; C;Dg

and

E(G) = ffA;Bg; fC;Dg; fA;Dg; fB;Cg; fA;Cgg

then G is a graph with 4 vertices and 5 edges.
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What are graphs used for?

Graphs are used to model any kind of binary

relationship in many di�erent domains. Here

are some examples:

In computing: The vertices of the graph are

processors in a parallel computer. The edges

connect processors that are directly joined by a

communication link.
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In chemistry The vertices are carbon atoms in

a molecule, and there is an edge between two

vertices if there is a bond between the

corresponding atoms.
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In mathematics The vertices of the graph are

the points of the Euclidean plane. Two

vertices are joined by an edge if the distance

between them is exactly one.

This graph is hard to draw because it is an

in�nite graph.



More examples

In games The vertices are the 64 squares on a

chessboard, and two vertices are joined by an

edge if a knight can move from one square to

the other.
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The problem of �nding a knight's tour is

equivalent to �nding a Hamilton cycle in this

graph. (Hamilton cycles will be de�ned later.)



Six degrees of separation

The Acquaintanceship graph The vertices of

the graph are all the people in the world. Two

vertices are joined by an edge if the

corresponding people know each other by

name.

It is often stated that there are at most six

links between any two people in the world|in

graph theory this is equivalent to saying that

the diameter of the acquaintanceship graph is

six.

Erd�os number Consider a graph whose

vertices are all the authors who have published

a paper in a refereed journal. There is an edge

between two vertices if the corresponding

authors have published a joint paper in a

refereed journal.

The Erd�os number of a mathematician M is

the distance of M from the vertex \Erd�os".

See

http://www.acs.oakland.edu/~grossman/Erdoshp.html

(linked from ALG page) for details about this

graph.



Isomorphisms

Consider the following two graphs:
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Apart from the \names" of the vertices and

the geometric positions it is clear that these

two graphs are basically the same | in this

situation we say that they are isomorphic.

De�nition Two graphs G

1

and G

2

are

isomorphic if there is a one-one mapping

� : V (G

1

)! V (G

2

) such that

f�(x); �(y)g 2 E(G

2

) if and only if

fx; yg 2 E(G

1

).

In this case the isomorphism is given by the

mapping

�(A) = 2 �(B) = 3 �(C) = 4 �(D) = 1



The Graph interface

There are many ways to implement graphs,

and graph-theoretic algorithms in Java. Using

an interface to represent a \bare-bones" graph

seems to be the most useful.

public interface Graph {

int getNumVertices();

boolean isAdjacent(int x, int y);

void addEdge(int x, int y);

void deleteEdge(int x, int y);

}

If a graph has v vertices, then we will always

assume that the vertex set is f0;1; : : : ; v � 1g.

All the graphs that we consider will implement

the Graph interface. As we study more types of

graph we will subclass this interface to provide

further interfaces.



An example graph

This is a graph X with 7 vertices and 9 edges.

We will use it later to illustrate some of the

main graph theoretic concepts.
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Basic properties of graphs

Let us consider some of the basic terminology

of graphs:

Adjacency If fx; yg 2 E(G), we say that x and

y are adjacent to each other, and sometimes

write x � y. The number of vertices adjacent

to v is called the degree or valency of v. The

vertices adjacent to v are the neighbours of v.

Theorem The sum of the degrees of the

vertices of a graph is even.

Paths A path of length n in a graph is a

sequence of vertices v

1

� v

2

� � � � � v

n+1

that

contains no vertex twice. A cycle of length n is

a sequence of vertices v

1

� v

2

� � � � v

n

� v

1

such

that the vertices fv

1

; v

2

; : : : ; v

n

g are distinct.

Distance The distance between two vertices x

and y in a graph is the length of the shortest

path between them.



Subgraphs

If G is a graph, then a subgraph H is a graph

such that

V (H) � V (G)

and

E(H) � E(G)

A spanning subgraph H has the property that

V (H) = V (G)|in other words H has been

obtained from G only by removing edges.

An induced subgraph H must contain every

edge of G whose endpoints lie in V (H) | in

other words H has been obtained from G by

removing vertices and their adjoining edges.



Connectivity, forests and trees

Connected A graph G is connected if there is

a path between any two vertices. If the graph

is not connected then its connected

components are the maximal induced

subgraphs that are connected.

Forests A forest is a graph that has no cycles.

Trees A tree is a forest with only one

connected component. It is easy to see that a

tree with n vertices has exactly n� 1 edges.

The vertices of degree 1 in a tree are called

the leaves of the tree.



Directed graphs

There are two important extensions to the

basic de�nition of a graph.

Directed graphs In a directed graph, an

edge is an ordered pair of vertices, and hence

has a direction. In directed graphs, edges are

often called arcs.

A directed graph can be used to represent

things like a 1-way road system, where travel is

possible from x to y, but not from y to x.

We do not need to alter our Graph interface at

all to represent directed graphs: in fact we will

treat all graphs as directed graphs, where an

undirected edge between x and y is considered

equivalent to an arc from x to y and an arc

from y to x.

Do we need an interface for UndirectedGraph?

public interface UndirectedGraph extends Graph {

}



Weighted graphs

Weighted graphs In a weighted graph, each

of the edges is assigned a weight (usually a

non-negative integer). More formally we say

that a weighted graph is a graph G together

with a weight function w : E(G)! R (then

w(e) represents the weight of the edge e).

Weights on edges are often used to represent

things like travel costs, transmission costs,

road capacities and so on. For simplicity we

will assume that edge weights are always

integers. It would be straightforward to

implement 
oating point edge weights.

public interface WeightedGraph extends Graph {

int getWeight(int v, int w);

void setWeight(int v, int w, int wt);

}

We must be careful here about what the e�ect

of removeEdge() should be on a weighted graph.

We will use the convention that an edge

weight of 0 always represents non-adjacency,

so that removeEdge(x,y) can be implemented as

setWeight(x,y,0).



Distance in weighted graphs

When talking about weighted graphs, we need

to extend the concept of distance.

De�nition In a weighted graph X a path

x= x

0

� x

1

� � � � � x

n

= y

has weight

i=n�1

X

i=0

w(x

i

; x

i+1

):

The shortest path between two vertices x and

y is the path of minimum weight (this should

really be called the lightest path!).

If we view an unweighted graph as being a

special kind of weighted graph, with all the

edges of weight 1, then the de�nition of path

reduces to our previous de�nition.



Representation of graphs

There are two main ways to represent a graph

| adjacency lists or an adjacency matrix.

Adjacency lists The graph G is represented

by an array of jV (G)j linked lists, with each list

containing the neighbours of a vertex.
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-
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-
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This representation requires two list elements

for each edge and therefore the space required

is �(jV (G)j+ jE(G)j).

NOTE: In general to avoid writing jV (G)j and

jE(G)j we shall simply put V = jV (G)j and

E = jE(G)j:

This representation is immediately suitable for

directed graphs, and requires only minor

modi�cation for weighted graphs.



Adjacency matrix

The adjacency matrix of a graph G is a V � V

matrix A where the rows and columns are

indexed by the vertices and such that A

ij

= 1 if

and only if vertex i is adjacent to vertex j.

For the graph X we have the following

A =

0

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0 0

1 0 1 0 1 0 0

0 1 0 0 1 1 0

0 0 0 0 1 0 0

0 1 1 1 0 1 1

0 0 1 0 1 0 1

0 0 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

A

The adjacency matrix representation uses

�(V

2

) space.

For a sparse graph E is much less than V

2

, and

hence we would normally prefer the adjacency

list representation.

For a dense graph E is close to V

2

and the

adjacency matrix representation is preferred.



Breadth-�rst search

Searching through a graph is one of the most

fundamental of all algorithmic tasks, and

therefore we shall examine several techniques

for doing so.

Breadth-�rst search is a simple but extremely

important technique for searching a graph.

This search technique starts from a given

source vertex s and constructs a spanning tree

T for G, called the breadth-�rst tree. It uses a

(�rst-in, �rst-out) queue as its main data

structure.

Following CLR, as the search progresses, we

will divide the vertices of the graph into three

categories, black vertices which are the vertices

that have been fully examined and incorporated

into the tree, grey vertices which are the

vertices that have been seen (because they are

adjacent to a tree vertex) and placed on the

queue, and white vertices, which have not yet

been examined.



Breadth-�rst search initialization

The �nal breadth-�rst tree will be stored as an

array called � where �(x) is the immediate

parent of x in the spanning tree. Of course, as

s is the root of this tree, �(s) will remain

unde�ned.

To initialize the search we mark the colour of

every vertex as white and the queue is empty.

Then the �rst step is to mark the colour of v

to be grey, put �(s) to be unde�ned and add s

to the queue.



Breadth-�rst search repetitive step

Then the following procedure is repeated until

the queue is empty.

Take vertex w from the head of the queue

for each vertex x adjacent to w do

if x is white then

�(x) = w

Colour x grey.

Add x to the queue.

end if

end for

Colour w black.

At the end of the search, every vertex in the

graph will have colour black and the parent or

predecessor array � will contain the details of

the breadth-�rst search tree.



Queues revisited

Recall that a queue is a data structure whereby

the element taken o� the data structure is the

element that has been on the queue for the

longest time.

If the maximum length of the queue is known

in advance (and is not too great) then a queue

can be very e�ciently implemented by simply

using an array.

An array of n elements is initialized, and two

pointers called head and tail are maintained |

the head gives the location of the next element

to be removed, while the tail gives the location

of the �rst empty space in the array.

It is trivial to see that both enqueueing and

dequeing operations take �(1) time.

See CLR, Section 11.1 for further details.



Example of breadth-�rst search
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After visiting vertex 0
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After visiting vertex 1
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After visiting vertex 2
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After visiting vertex 4
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After visiting vertex 5
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After visiting vertex 3
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After visiting vertex 6
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x colour(x) �(x)

0 black undef

1 black 0

2 black 1

3 black 4

4 black 1

5 black 2

6 black 4



At termination

At the termination of breadth-�rst search,

every vertex in the same connected component

as s is a black vertex and the array � contains

details of a spanning tree for that

component|the breadth-�rst search tree.

Complexity analysis

During the breadth-�rst search each vertex is

enqueued once and dequeued once. As each

enqueueing/dequeuing operation takes

constant time, the queue manipulation takes

�(V ) time. At the time the vertex is

dequeued, the adjacency list of that vertex is

completely examined. Therefore we take �(E)

time examining all the adjacency lists and the

total time is �(V + E).



Uses of BFS

Breadth-�rst search is particularly useful for

certain simple tasks such as determining

whether a graph is connected, or �nding the

distance between two vertices.

The vertices of G are examined in order of

increasing distance from s|�rst s, then its

neighbours, then the vertices at distance 2

from s and so on. The spanning tree

constructed provides a shortest path from any

vertex back to s just by following the array �.

Therefore it is simple to modify the

breadth-�rst search to provide an array of

distances d where d(v) is the distance of the

vertex v from the source vertex s.



Breadth-�rst search �nding distances

To initialize the search we mark the colour of

every vertex as white and the queue is empty.

Then the �rst step is to colour the source

vertex s grey, put �(s) to be unde�ned,

d(s) = 0, and add s to the queue.

Then until the queue is empty we repeat the

following procedure.

Take vertex w from the head of the queue

for each vertex x adjacent to w do

if x is white then

d(x) = d(w) + 1

�(x) = w

Colour x grey.

Add x to the queue.

end if

end for

Colour w black.



Depth-�rst search

Depth-�rst search is another important

technique for searching a graph. Similarly to

breadth-�rst search it also computes a

spanning tree for the graph, but the tree is

very di�erent.

The structure of depth-�rst search is naturally

recursive so we will give a recursive description

of it. Nevertheless it is useful and important to

consider the non-recursive implementation of

the search.

The fundamental idea behind depth-�rst search

is to visit the next unvisited vertex, thus

extending the current path as far as possible.

When the search gets stuck in a \corner" we

back up along the path until a new avenue

presents itself (this is called backtracking).



Basic recursive depth-�rst search

The following recursive program computes the

depth-�rst search tree for a graph G starting

from the source vertex s.

To initialize the search we mark the colour of

every vertex as white. Then we call the

recursive routine DFS(s) where s is the source

vertex.

procedureDFS(w)

Colour w grey.

for each vertex x adjacent to w do

if x is white then

�(x) = w

DFS(x)

end if

end for

Colour w black.

At the end of this depth-�rst search procedure

we have produced a spanning tree containing

every vertex in the connected component

containing s.



Example of depth-�rst search

We will search the following graph from the

source vertex 0.
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Immediately prior to calling DFS(1)
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Immediately prior to calling DFS(2)
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Immediately prior to calling DFS(4)
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Immediately prior to calling DFS(3)
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Immediately prior to calling DFS(5)

Now the call to DFS(2) actually �nishes

without making any more recursive calls so we

return to examining the neighbours of vertex 4,

the next of which is vertex 5.
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Immediately prior to calling DFS(6)
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The depth-�rst search tree

After completion of the search we can draw

the depth-�rst search tree for this graph:
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In this picture the slightly thicker straight edges

are the tree edges and the remaining edges are

the back edges|the back edges arise when we

examine an edge (u; v) and discover that its

endpoint v no longer has the colour white



Analysis of DFS

The running time of DFS is easy to analyse as

follows.

First we observe that the routine DFS(w) is

called exactly once for each vertex w; during

the execution of this routine we perform only

constant time array accesses, and run through

the adjacency list of w once.

Running through the adjacency list of each

vertex exactly once takes �(E) time overall,

and hence the total time taken is �(V + E).

In fact, we can say more and observe that

because every vertex and every edge are

examined precisely once in both BFS and DFS,

the time taken is �(V + E).



Discovery and �nish times

The operation of depth-�rst search actually

gives us more information than simply the

depth-�rst search tree; we can assign two

times to each vertex.

Consider the following modi�cation of the

search, where time is a global variable that

starts at time 1.

procedureDFS(w)

colour[w]  grey

discovery[w]  time

time  time+1

for each vertex x adjacent to w do

if colour[x] is white then

�[x]  w

DFS(x)

end if

end for

colour[w]  black

�nish[w]  time

time  time+1



The parenthesis property

This assigns to each vertex a discovery time,

which is the time at which it is �rst discovered,

and a �nish time, which is the time at which

all its neighbours have been searched and it no

longer plays any further role in the search.

The discovery and �nish times satisfy a

property called the parenthesis property.

Imagine writing down an expression consisting

entirely of labelled parentheses | at the time

of discovering vertex u we open a parenthesis

(

u

and a the time of �nishing with u we close

the parenthesis

u

).

Then the resulting expression is a well-formed

expression with correctly nested parentheses.

For our example depth-�rst search we get:
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Depth-�rst search for directed graphs

A depth-�rst search on an undirected graph

produces a classi�cation of the edges of the

graph into tree edges, or back edges. For a

directed graph, there are further possibilities.

The same depth-�rst search algorithm can be

used to classify the edges into four types:

tree edges If the procedure DFS(u) calls

DFS(v) then (u; v) is a tree edge

back edges If the procedure DFS(u) explores

the edge (u; v) but �nds that v is an

already visited ancestor of u, then (u; v) is

a back edge

forward edges If the procedure DFS(u)

explores the edge (u; v) but �nds that v is

an already visited descendant of u, then

(u; v) is a forward edge

cross edges All other edges are cross-edges



Topological sort

We shall consider a classic simple application

of depth-�rst search.

De�nition A directed acyclic graph (dag) is a

directed graph with no directed cycles.

Theorem In a depth-�rst search of a dag

there are no back edges.

Consider now some complicated process in

which various jobs must be completed before

others are started. We can model this by a

graph D where the vertices are the jobs to be

completed and there is an edge from job u to

job v if job u must be completed before job v is

started. Our aim is to �nd some linear ordering

of the jobs such that they can be completed

without violating any of the constraints.

This is called �nding a topological sort of the

dag D.



Example of a dag to be topologically sorted
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What is the appropriate linear order in which to

do these jobs so that all the precedences are

satis�ed.



Algorithm for TOPOLOGICAL SORT

The algorithm for topological sort is an

extremely simple application of depth-�rst

search.

Algorithm

Apply the depth-�rst search procedure to �nd

the �nishing times of each vertex. As each

vertex is �nished, put it onto the front of a

linked list.

At the end of the depth-�rst search the linked

list will contain the vertices in topologically

sorted order.



Doing the topological sort
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After the �rst depth-�rst search
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Notice that there is a component that has not

been reached by the depth-�rst search. To

complete the search we just repeatedly perform

depth-�rst searches until all vertices have been

examined.



After the entire search
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As the vertices were placed at the front of a

linked list as they became �nished the �nal

topological sort is: O�N �A�B �C �G� F �

J �K � L� P � I �M � E �D �H

A topologically sorted dag has the property

that any edges drawn in the above diagram will

got from left-to-right.



Analysis and correctness

Time analysis of the algorithm is very easy |

to the �(V +E) time for the depth-�rst search

we must add �(V ) time for the manipulation

of the linked list. Therefore the total time

taken is again �(V + E).

Why does it work?

We shall try to show that for any edge (u; v) in

the dag the �nishing time f(u) > f(v).

Consider the stage at which the edge (u; v) is

encountered. If (u; v) is a tree edge, then the

depth-�rst search proceeds from u to v and

clearly �nishes with v before �nally returning to

u. On the other hand if (u; v) is a forward or

cross edge, then the vertex v has already been

completely examined by this stage, and hence

vertex u must have a later �nishing time. The

edge (u; v) cannot be a back edge because a

dag has no cycles.



Other uses for DFS

DFS is the standard algorithmic method for

solving the following two problems:

Strongly connected components In a

directed graph D a strongly connected

component is a maximal subset S of the

vertices such that for any two vertices u, v 2 S

there is a directed path from u to v and from v

to u.

Depth-�rst search can be used on a digraph to

�nd strongly connected components in time

�(V + E).

Biconnected components In a connected

graph G, an articulation point is a vertex

whose removal disconnects the graph.

Depth-�rst search can be used on a graph to

�nd all the articulation points in time

�(V + E).



Minimum spanning tree (MST)

Consider a group of villages in a remote area

that are to be connected by telephone lines.

There is a certain cost associated with laying

the lines between any pair of villages,

depending on their distance apart, the terrain

and some pairs just cannot be connected.

Our task is to �nd the minimum possible cost

in laying lines that will connect all the villages.

This situation can be modelled by a weighted

graph W , in which the weight on each edge is

the cost of laying that line. A minimum

spanning tree in a graph is a subgraph that is

(1) a spanning subgraph (2) a tree and (3) has

a lower weight than any other spanning tree.

It is clear that �nding a MST for W is the

solution to this problem.



The greedy method

De�nition A greedy algorithm is an algorithm

in which at each stage a locally optimal choice

is made.

A greedy algorithm is therefore one in which no

overall strategy is followed, but you simply do

whatever looks best at the moment.

For example a mountain climber using the

greedy strategy to climb Everest would at

every step climb in the steepest direction.

From this analogy we get the computational

search technique known as hill-climbing.

In general greedy methods have limited use,

but fortunately, the problem of �nding a

minimum spanning tree can be solved by a

greedy method.



Kruskal's method

Kruskal invented the following very simple

method for building a minimum spanning tree.

It is based on building a forest of lowest

possible weight and continuing to add edges

until it becomes a spanning tree.

Kruskal's method

Initialize F to be the forest with all the vertices

of G but none of the edges.

repeat

Pick an edge e of minimum possible weight

if F [ feg is a forest then

F  F [ feg

end if

until F contains n� 1 edges

Therefore we just keep on picking the smallest

possible edge, and adding it to the forest,

providing that we never create a cycle along

the way.



Example
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After using edges of weight 1
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After using edges of weight 2
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The �nal MST
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Prim's algorithm

Prim's algorithm is another greedy algorithm

for �nding a minimum spanning tree.

The idea behind Prim's algorithm is to grow a

minimum spanning tree edge-by-edge by always

adding the shortest edge that touches a vertex

in the current tree.

Notice the di�erence between the algorithms:

Kruskal's algorithm always maintains a

spanning subgraph which only becomes a tree

at the �nal stage.

On the other hand, Prim's algorithm always

maintains a tree which only becomes spanning

at the �nal stage.



Prim's algorithm in action
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One solution
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Problem solved?

As far as a mathematician is concerned the

problem of a minimum spanning tree is

well-solved. We have two simple algorithms

both of which are guaranteed to �nd the best

solution. (After all, a greedy algorithm must

be one of the simplest possible).

In fact, the reason why the greedy algorithm

works in this case is well understood | the

collection of all the subsets of the edges of a

graph that do not contain a cycle forms what

is called a (graphic) matroid.

Loosely speaking, a greedy algorithm always

works on a matroid and never works otherwise.



Implementation issues

In fact the problem is far from solved because

we have to decide how to implement the two

greedy algorithms.

The details of the implementation of the two

algorithms are interesting because they use

(and illustrate) two important data structures

| the partition and the priority queue.



Implementation of Kruskal

The main problem in the implementation of

Kruskal is to decide whether the next edge to

be added is allowable | that is, does it create

a cycle or not.

Suppose that at some stage in the algorithm

the next shortest edge is fx; yg. Then there are

two possibilities:

x and y lie in di�erent trees of F : In this

case adding the edge does not create any

new cycles, but merges together two of the

trees of F

x and y lie in the same tree of F : In this

case adding the edge creates a cycle and

the edge should not be added to F

Therefore we need data structures that allow

us to quickly �nd the tree to which an element

belongs and quickly merge two trees.



Union/�nd data structure

A partition of a set 
 is a collection of disjoint

sets that cover 
.

At the beginning of Kruskal's algorithm we

have a partition of the vertices into the

discrete partition where each cell has size 1.

As new edges are added, we need to determine

whether its two ends are in the same cell or

not, and if not we need to merge the two cells.

Therefore we need an ADT that supports

these operations. In Java we express our desire

as an interface.

public interface UnionFind {

void union(int x, int y);

int find(int x);

}



The naive solution

One simple way to represent a partition is

simply to choose one element of each cell to

be the \leader" of that cell. Then we can

simply keep a private array � of length n where

�(x) is the leader of the cell containing x.

Example Consider the partition of 8 elements

into 3 cells as follows:

f0;2 j 1;3;5 j 4;6;7g

We could represent this as an array as follows

x 0 1 2 3 4 5 6 7

�(x) 0 1 0 1 4 1 4 4

Then certainly the method find() is

straightforward | we can decide whether x

and y are in the same cell just by comparing

�(x) with �(y).

Thus find() has complexity �(1).



Updating the partition

Suppose now that we wish to update the

partition by merging the �rst two cells to

obtain the partition

f0;1;2;3;5 j 4;6;7g

We could update the data structure by running

through the entire array � and updating it as

necessary.

x 0 1 2 3 4 5 6 7

�(x) 0 0 0 0 4 0 4 4

This takes time �(n), and hence the union

method is slow.

Can we improve the time of this union method?



A disjoint sets forest

Consider the following graphical representation

of the union/�nd data structure above, where

each element points (upwards) to the \leader"

of the cell that it is in.
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Now mergine two cells is accomplished by

adjusting the pointers so they point to the new

leader.
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However we can achieve something similar by

just adjusting one pointer|suppose we simply

change the pointer for the element 1, by

making it point to 0 instead of itself.



The new data structure
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This improved merging has takes only �(1).

However we have lost the ability to do find()

properly. In order to correctly �nd the leader of

the cell containing an element we have to run

through a little loop:

int find(int x) {

while (x != pi[x])

x = pi[x];

return x;

}

Unfortunately, this new find() operation may

take time O(n) so we seem to have gained

nothing.



Union-by-rank heuristic

There are two heuristics that can be applied to

the new data structure, that speed things up

enormously at the cost of maintaining a little

extra data.

Let the rank of a root node of a tree be the

height of that tree (the maximum distance

from a leaf to the root).

The union-by-rank heuristic tries to keep the

trees balanced at all times. When a merging

operation needs to be done, the root of the

shorter tree is made to point to the root of the

taller tree. The resulting tree therefore does

not increase its height unless both trees are the

same height in which case the height increases

by one.



The Partition class

public class Partition implements UnionFind {

private int[] pi;

private int[] rank;

Partition(int n) {

pi = new int[n];

rank = new int[n];

for (int i=0;i<n;i++) {

pi[i] = i;

rank[i] = 0;

}

}

/** methods union and find

to be added **/

}



Implementation of union by rank

/********************************************

Note: Assumes lcell1 and lcell2 are cell

leaders. Call find() if they are not.

*********************************************/

public void union(int lcell1, int lcell2) {

if (rank[lcell2] > rank[lcell1]) {

pi[lcell1] = lcell2;

}

else {

pi[lcell2] = lcell1;

if (rank[lcell2] == rank[lcell1])

rank[lcell1]++;

}

}

Notice how the rank is updated only if

necessary.



Path compression heuristic

The path compression heuristic is based on the

idea that when we perform a find() operation

we have to follow a path from x to the root of

the tree containing x.

After we have done this why do we not simply

go back down through this path and make all

these elements point directly to the root of the

tree, rather than in a long chain through each

other?

This is reminiscent of our naive algorithm,

where we made every element point directly to

the leader of its cell, but it is much cheaper

because we only alter things that we needed to

look at anyway.



Implementation of path compression

The path compression heuristic is easily

implemented, simply by adjusting the find()

method so that it updates the pi[] entry for

every element it touches.

public int find(int cell) {

if (cell != pi[cell])

pi[cell] = find(pi[cell]);

return pi[cell];

}

Make sure that you understand why this simple

recursive method implements the path

compression heuristic.



Complexity of Kruskal

In the worst case, we will perform E operations

on the partition data structure which has size

V . By the complicated argument in CLR we

see that the total time for these operations if

we use both heuristics is O(E lg

�

V ).

However we must add to this the time that is

needed to sort the edges | because we have

to examine the edges in order of length. This

time is O(E lgE) if we use a sorting technique

such as quicksort, and hence the overall

complexity of Kruskal's algorithm is O(E lgE).

Notice that the time taken for this algorithm is

dominated by sorting the edges. If there are

many edges, in particular if the graph is a

complete graph, then this can take a long time.



Implementation of Prim

For Prim's algorithm we repeatedly have to

select the next vertex that is closest to the

tree that we have built so far. Therefore we

need some sort of data structure that will

enable us to associate a value with each vertex

(being the distance to the tree under

construction) and rapidly select the vertex with

the lowest value.

From our study of Data Structures we know

that the appropriate data structure is a priority

queue and that a priority queue is implemented

by using a heap.



The priority queue ADT

Recall that a priority queue is an abstract data

type that stores objects with an associated

value. We consider these objects to be

Comparable where the comparisons are

performed according to the value associated

with the object.

A priority queue allows the objects with lowest

values to be examined and extracted from the

queue.

public interface PriorityQueue {

void insert(Comparable x);

Comparable deleteMin() throws EmptyQExcptn;

Comparable findMin() throws EmptyQExcptn;

void makeEmpty();

boolean isEmpty();

}



Heaps

A heap is a binary tree that stores Comparable

objects such that each non-leaf node is less

than both of its children. This means that the

smallest object on the heap must occur at the

root of the binary tree.
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We actually store the heap as a linear array:

1 5 6 18 20 7 12 50 30 22 25 8 10 13

Notice that if the bottom level of the binary

tree is not complete then it is �lled from the

left.



Parents and Children

Suppose the objects are stored in an array

items. For reasons outlined later, we will not

use items[0] to store an object, but start the

storage at items[1].

Then the following things are easy to see:

� The root of the tree is items[1]

� The left-hand child of items[i] is

items[2*i]

� The right-hand child of items[i] is

items[2*i+1]

� The parent of items[i] is items[i/2].



Insertion

How can we insert an element into a heap?

The obvious answer is that it should be added

to the end of the array, thus creating a binary

tree with one more element. Unfortunately, the

resulting binary tree is usually no longer a heap,

and so we must restore the heap property.

This is done by an operation known as

percolateUp(int pos) whereby the element in

position pos is moved up the binary tree until

the heap property is restored.

private void percolateUp(int pos) {

Comparable tmp = items[pos];

while (pos > 1 && tmp.lessThan(items[pos/2]) {

items[pos] = items[pos/2];

pos /= 2;

}

items[pos] = tmp;

}



The operation of deleteMin() returns and

removes the root of the binary tree works.

If the root is removed from the tree, then

there will be a \hole" left where the root was.

Initially this hole is �lled by replacing the

element with the last element in the array (so

that the array has no holes in it).

Once again, this will usually destroy the heap

property of the binary tree, and it must be

repaired by \percolating down" the o�ending

element.

private void percolateDown(int pos) {

Comparable tmp = items[pos];

int smallest = pos;

while (2*pos <= numItems) {

smallest = 2*pos;

if (2*pos+1 <= numItems) {

if (items[2*pos+1].lessThan(items[2*pos]))

smallest = 2*pos+1;

}

if (items[smallest].lessThan(tmp)) {

items[pos] = items[smallest];

pos = smallest;

}

else break;

}

items[pos] = tmp;

}



Prim's algorithm

It is now easy to see how to implement Prim's

algorithm. The objects that we will store in

the priority queue will be pairs of the form

(v; k(v)). The values k(v) will always contain

the length of the shortest edge connecting v to

the spanning tree that is being grown. This

value will be the value used by the priority

queue for its comparisons.

The spanning tree being constructed will again

be represented by an array � where, as before,

�(v) contains the parent of v in the spanning

tree.

To initialize the algorithm, we set k(s) = 0,

and add (s; k(s)) to the priority queue.



The repetitive step

At every stage of the algorithm, the pair

(u; k(u)) with the lowest value of k(u) is

extracted from the priority queue. If the vertex

u is already in the spanning tree, then it has

already been fully examined. Otherwise, u gets

incorporated into the spanning tree with the

current value of �(u) as its parent. Then we

examine every edge (u; v) leading from u:

1. If v is already in the spanning tree, then we

have already considered it, and nothing

further needs to be done.

2. If v is not in the spanning tree, then we

have to determine if the edge (u; v) should

cause an update in the priority and parent

of v. If the weight w(u; v) of the edge (u; v)

is less than k(v) then we should set

k(v) = w(u; v) and �(v) = u.

This can be done in two ways|either another

array can be used to keep track of where v lies

in the priority queue, and the value updated, or

we simply insert the pair (v; w(u; v)) into the

priority queue.



Complexity of Prim

The complexity of Prim's algorithm is

dominated by the heap operations.

Every vertex is extracted from the priority

queue at some stage, hence the deleteMin()

operations in the worst case take time

O(V lgV ).

Also, every edge is examined at some stage in

the algorithm and each edge examination

potentially causes an insert() operation.

Hence in the worst case these operations take

time O(E lgV ).

Therefore the total time is

O(V lgV + E lgV ) = O(E lgV )



Priority-�rst search

Let us generalize the ideas behind this

implementation of Prim's algorithm.

Consider the following very general

graph-searching algorithm. We will later show

that by choosing di�erent speci�cations of the

priority we can make this algorithm do very

di�erent things. This algorithm will produce a

priority-�rst search tree.

The key-values or priorities associated with

each vertex are stored in an array called k.

Then we select a source vertex s for the

search, put k(s) = 0, and add (s; k(s)) to the

priority queue.



PFS repetitive step

At every stage of the algorithm, the pair

(u; k(u)) with the lowest value of k(u) is

extracted from the priority queue. If the vertex

u is already in the spanning tree, then it has

already been fully examined.

Otherwise, u gets incorporated into the

spanning tree with the current value of �(u) as

its parent. Then we examine every edge (u; v)

leading from u. For each such edge there are

two possibilities:

1. If v is already in the spanning tree, then we

have already considered it, and nothing

further needs to be done.

2. If v is not in the spanning tree, then we

have to determine if the edge (u; v) should

cause an update in the priority and parent

of v. If the value PRIORITY is less than

k(v) then we set k(v) = PRIORITY and

�(v) = u.

By changing the precise de�nition of

PRIORITY we get a whole variety of searches.



Prim's algorithms is PFS

Prim's algorithm can be expressed as a

priority-�rst search by observing that the

priority of a vertex is the weight of the shortest

edge joining the vertex to the rest of the tree.

This is achieved in the code above by simply

replacing the string PRIORITY by

w(u; v)

At any stage of the algorithm:

� The vertices extracted from the priority

queue form the spanning tree so far.

� For each vertex v not yet incorporated into

the spanning tree, the value k(v) gives the

length of the shortest edge from v to a vertex

in the spanning tree, and �(v) holds the

number of this vertex.



Shortest paths

Let G be a directed weighted graph; we have

already de�ned the shortest path (that should

be the lightest path); we denote the length of

the shortest path from v to w by �(v; w).

Let s 2 V (G) be a speci�ed vertex called the

source vertex.

The single-source shortest paths problem is to

�nd the shortest path from s to every other

vertex in the graph (as opposed to the all-pairs

shortest paths problem, where we must �nd

the distance between every pair of vertices).



Dijkstra's algorithm

Dijkstra's algorithm is a famous single-source

shortest paths algorithm suitable for the cases

when the weights are all non-negative.

Dijkstra's algorithm can be implemented as a

priority-�rst search by taking the priority of a

vertex v to be the shortest path from s to v

whose intermediate vertices lie in the

priority-�rst search tree.

This can be implemented as a PFS by

replacing PRIORITY with

k(u) + w(u; v)

At the end of the search, the array k contains

the lengths of the shortest paths from the

source vertex s.



Dijkstra's algorithm in action
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Proof of correctness

It is fairly easy to prove that Dijkstra's

algorithm is correct by proving the following

claim

� At the time that a vertex v is removed

from the priority queue and placed into

the priority �rst spanning tree T ,

k(v) = �(s; v):

To prove this claim we consider the moment at

which v is removed from the priority queue.

T

s

u

u

0

v

v

0

'

&



Proof

Suppose v has just been removed from the

priority queue, and that �(v) = u. Then

k(v) = �(s; u) + w(u; v)

If this value is not the true value of �(s; v) then

there must be a shorter path from s to v. This

shorter path must leave T at some stage, say

the edge (u

0

; v

0

). Then consider the value

k(v

0

)|because the edge (u

0

; v

0

) was examined

when u

0

was added to T , the value of this key

is at most �(s; u

0

)+w(u

0

; v

0

) This value however

is less than the length of the shortest path

from s to v and hence is less than the key

value for v, which is impossible.

Therefore this situation cannot occur and we

conclude that there cannot be any shorter

paths from s to v and the result is true.



Complexity of PFS

The complexity of this search is easy to

calculate | the main loop is executed V

times, and each deleteMin() operation takes

O(lgV ) yielding a total time of O(V lgV ) for

the extraction operations.

During all V operations of the main loop we

examine the adjacency list of each vertex

exactly once | hence we make E calls, each

of which may cause an insert() to be

performed. Hence we do at most O(E lgV )

work on these operations.

Therefore the total is

O(V lg V + E lg V ) = O(E lg V ):



Relaxation

Consider the following property of Dijkstra's

algorithm.

� At any stage of Dijkstra's algorithm the

following inequality holds:

�(s; v) � k(v)

This is saying that the k array always holds a

collection of upper bounds on the actual values

that we are seeking. We can view these values

as being our \best estimate" to the value so

far, and Dijkstra's algorithm as a procedure for

systematically improving our estimates to the

correct values.

The fundamental step in Dijkstra's algorithm,

where the bounds are altered is when we

examine the edge (u; v) and do the following

operation

k(v) = minfk(v); k(u) + w(u; v)g

This is called relaxing the edge (u; v).



Relaxation schedules

Consider now an algorithm that is of the

following general form:

� Initially an array d is initialized to

have d(s) = 0 for some source vertex s

and d(v) =1 for all other vertices

� A sequence of edge relaxations is

performed, possibly altering the values

in the array d.

We observe that the value d(v) is always an

upper bound for the value �(s; v) because

relaxing the edge (u; v) will either leave the

upper bound unchanged or replace it by a

better estimate from an upper bound on a

path from s! u! v.

Dijkstra's algorithm is a particular schedule for

performing the edge relaxations that

guarantees that the upper bounds converge to

the exact values.



Negative edge weights

Dijkstra's algorithm cannot be used when the

graph has some negative edge-weights (why

not? �nd an example).

In general, no algorithm for shortest paths can

work if the graph contains a cycle of negative

total weight (because a path could be made

arbitrarily short by going round and round the

cycle). Therefore the question of �nding

shortest paths makes no sense if there is a

negative cycle.

However, what if there are some negative edge

weights but no negative cycles?

The Bellman-Ford algorithm is a relaxation

schedule that can be run on graphs with

negative edge weights. It will either fail in

which case the graph has a negative cycle and

the problem is ill-posed, or will �nish with the

lengths of the shortest paths from s in the

array d.



Bellman-Ford algorithm

The initialization step is as described above.

Let us suppose that the weights on the edges

are given by the function w.

Then consider the following relaxation

schedule:

for i = 1 to jV (G)j � 1 do

for each edge (u; v) 2 E(G) do

RELAX(u,v)

end for each

end for

Finally we make a single check to determine if

we have a failure:

for each edge (u; v) 2 E(G) do

if d(v) > d(u) + w(u; v) then FAIL

end if

end for each



Complexity of Bellman-Ford

The complexity is particularly easy to calculate

in this case because we know exactly how

many relaxations are done | namely E(V � 1),

and adding that to the �nal failure check loop,

and the initialization loop we see that

Bellman-Ford is O(EV )

There remains just one question | how does

it work?

To answer this, let us consider some of the

properties of relaxation in a graph with no

negative cycles.

Property 1 Consider an edge (u; v) that lies on

the shortest path from s to v. If the sequence

of relaxations includes relaxing (u; v) at a stage

when d(u) = �(s; u), then d(v) is set to �(s; v)

and never changes after that.



Correctness of Bellman-Ford

Once convinced that Property 1 holds it is now

simple to see that the algorithm is correct for

graphs with no negative cycles.

Consider any vertex v and let us examine the

shortest path from s to v, namely

s � v

1

� v

2

� � � v

k

� v

Now at the initialization stage d(s) = 0 and it

always remains the same. After one pass

through the main loop the edge (s; v

1

) is

relaxed and by Property 1, d(v

1

) = �(s; v

1

) and

it remains at that value. After the second pass

the edge (v

1

; v

2

) is relaxed and after this

relaxation we have d(v

2

) = �(s; v

2

) and it

remains at this value.

As the number of edges in the path is at most

jV (G)j � 1, after all the loops have been

performed d(v) = �(s; v).



All-pairs shortest paths

Now we turn our attention to constructing a

complete table of shortest distances, which

must contain the shortest distance between

any pair of vertices.

If the graph has no negative edge weights then

we could simply make V runs of Dijkstra's

algorithm, at a total cost of O(V E lg V ),

whereas if there are negative edge weights then

we could make V runs of the Bellman-Ford

algorithm at a total cost of O(V

2

E).

The two algorithms we shall examine both use

the adjacency matrix representation of the

graph, hence are most suitable for dense

graphs. Recall that for a weighted graph the

weighted adjacency matrix A has w(i; j) as its

ij-entry, where w(i; j) =1 if i and j are not

adjacent.



A dynamic programming method

Dynamic programming is a general algorithmic

technique for solving problems that can be

characterised by two features:

� The problem is broken down into a

collection of smaller subproblems

� The solution is built up from the

stored values of the solutions to all of

the subproblems

For the all-pairs shortest paths problem we

de�ne the simpler problem to be

\What is the length of the shortest path from

vertex i to j that uses at most m edges?"

We shall solve this for m = 1, then use that

solution to solve for m = 2, and so on : : :



The initial step

We shall let d

(m)

ij

denote the distance from

vertex i to vertex j along a path that uses at

most m edges, and de�ne D

(m)

to be the

matrix whose ij-entry is the value d

(m)

ij

.

As a shortest path between any two vertices

can contain at most V � 1 edges, the matrix

D

(V�1)

contains the table of all-pairs shortest

paths.

Our overall plan therefore is to use D

(1)

to

compute D

(2)

, then use D

(2)

to compute D

(3)

and so on.

The case m = 1

Now the matrix D

(1)

is easy to compute | the

length of a shortest path using at most one

edge from i to j is simply the weight of the

edge from i to j. Therefore D

(1)

is just the

adjacency matrix A.



The inductive step

What is the smallest weight of the path from

vertex i to vertex j that uses at most m edges?

Now a path using at most m edges either be

1. A path using less than m edges

2. A path using exactly m edges, composed of

a path using m� 1 edges from i to an

auxiliary vertex k and the edge (k; j).

We shall take the entry d

(m)

ij

to be the lowest

weight path from the above choices.

Therefore we get

d

(m)

ij

= min

 

d

(m�1)

ij

; min

0�k<V

fd

(m�1)

ik

+ w(k; j)g

!

= min

0�k<V

fd

(m�1)

ik

+ w(k; j)g



Example

Consider the weighted graph with the following

weighted adjacency matrix:

A = D

(1)

=

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 1 1

10 1 0 1 1

1 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

Let us see how to compute an entry in D

(2)

,

suppose we are interested in the (0;2) entry:

Then we see that

0! 0! 3 has cost 0 + 11 = 11

0! 1! 3 has cost 1+ 4 =1

0! 2! 3 has cost 11+ 0 = 11

0! 3! 3 has cost 2 + 6 = 8

0! 4! 3 has cost 6 + 6 = 12

The minimum of all of these is 8, hence the

(0;2) entry of D

(2)

is set to 8.



Computing D

(2)

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 1 1

10 1 0 1 1

1 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 1 1

10 1 0 1 1

1 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

0 4 8 2 5

1 0 4 3 7

10 1 0 12 16

3 2 6 0 3

16 1 6 1 0

1

C

C

C

C

C

C

A

If we multiply two matrices AB = C, then we

compute

c

ij

=

k=V�1

X

k=0

a

ik

b

kj

If we replace the multiplication a

ik

b

kj

by

addition a

ik

+ b

kj

and replace summation � by

the minimum min then we get

c

ij

=

k=V�1

min

k=0

a

ik

+ b

kj

which is precisely the operation we are

performing to calculate our matrices.



The remaining matrices

Proceeding to compute D

(3)

from D

(2)

and A,

and then D

(4)

from D

(3)

and A we get:

D

(3)

=

0

B

B

B

B

B

B

@

0 4 8 2 5

1 0 4 3 6

10 14 0 12 15

3 2 6 0 3

16 1 6 18 0

1

C

C

C

C

C

C

A

D

(4)

=

0

B

B

B

B

B

B

@

0 4 8 2 5

1 0 4 3 6

10 14 0 12 15

3 2 6 0 3

16 20 6 18 0

1

C

C

C

C

C

C

A



A new matrix \product"

Recall the method for computing d

(m)

ij

, the

(i; j) entry of the matrix D

(m)

using the

method similar to matrix multiplication.

d

(m)

ij

 1

for k = 0 to V � 1 do

d

(m)

ij

= min(d

(m)

ij

; d

(m�1)

ik

+ w(k; j))

end for

We will use ? to denote this new matrix

product.

Then we have

D

(m)

= D

(m�1)

? A

Hence it is an easy matter to see that we can

compute as follows:

D

(2)

= A ? A D

(3)

= D

(2)

? A : : :



Complexity of this method

The time taken for this method is easily seen

to be �(V

4

) as it performs V matrix

\multiplications" each of which involves a

triply nested for loop with each variable

running from 1 to V .

However we can reduce the complexity of the

algorithm by remembering that we do not need

to compute all the intermediate products D

(1)

,

D

(2)

and so on, but we are only interested in

D

(V�1)

. Therefore we can simply compute:

D

(2)

= A ? A

D

(4)

= D

(2)

? D

(2)

D

(8)

= D

(4)

? D

(4)

Therefore we only need to do this operation at

most lg V times before we reach the matrix we

want.



Floyd-Warshall

The Floyd-Warshall algorithm uses a di�erent

dynamic programming formalism.

For this algorithm we shall de�ne d

(k)

ij

to be the

length of the shortest path from i to j whose

intermediate vertices all lie in the set f0; : : : ; kg.

As before, we shall de�ne D

(k)

to be the

matrix whose (i; j) entry is d

(k)

ij

.

The initial case

What is the matrix D

(�1)

| the entry d

(�1)

ij

is

the length of the shortest path from i to j with

no intermediate vertices. Therefore D

(�1)

is

simply the adjacency matrix A.



The inductive step

For the inductive step we assume that we have

constructed already the matrix D

(k�1)

and

wish to use it to construct the matrix D

(k)

.

Let us consider all the paths from i to j whose

intermediate vertices lie in f0;1; : : : ; kg. There

are two possibilities for such paths

(1) The path does not use vertex k

(2) The path does use vertex k

The shortest possible length of all the paths in

category (1) is given by d

(k�1)

ij

which we

already know.

If the path does use vertex k then it must go

from vertex i to k and then proceed on to j,

and the length of the shortest path in this

category is d

(k�1)

ik

+ d

(k�1)

kj

.



The overall algorithm

The overall algorithm is then simply a matter

of running V times through a loop, with each

entry being assigned as the minimum of two

possibilities. Therefore the overall complexity

of the algorithm is just O(V

3

).

D

(�1)

 A

for k = 0 to V � 1 do

for i = 0 to V � 1 do

for j = 0 to V � 1 do

d

(k)

ij

= min(d

(k�1)

ij

; d

(k�1)

ik

+ d

(k�1)

kj

)

end for j

end for i

end for k

At the end of the procedure we have the

matrix D

(V�1)

whose (i; j) entry contains the

length of the shortest path from i to j, all of

whose vertices lie in f0;2; : : : ; V � 1g|in other

words, the shortest path.



Example

Consider the weighted directed graph with the

following adjacency matrix:

D

(�1)

=

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 1 1

10 1 0 1 1

1 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

Let us see how to compute D

(0)

D

(0)

=

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4

10 1 0

1 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

To �nd the (1;3) entry of this matrix we have

to consider the paths through the vertex 0 |

is there a path from 1 { 0 { 3 that has a

better value than the current path? If so, then

that entry is updated.



The entire sequence of matrices

D

(1)

=

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 3 7

10 1 0 12 16

3 2 6 0 3

1 1 6 1 0

1

C

C

C

C

C

C

A

D

(2)

=

0

B

B

B

B

B

B

@

0 1 11 2 6

1 0 4 3 7

10 1 0 12 16

3 2 6 0 3

16 1 6 18 0

1

C

C

C

C

C

C

A

D

(3)

=

0

B

B

B

B

B

B

@

0 4 8 2 5

1 0 4 3 6

10 14 0 12 15

3 2 6 0 3

16 20 6 18 0

1

C

C

C

C

C

C

A

D

(4)

=

0

B

B

B

B

B

B

@

0 4 8 2 5

1 0 4 3 6

10 14 0 12 15

3 2 6 0 3

16 20 6 18 0

1

C

C

C

C

C

C

A



Finding the actual shortest paths

In both of these algorithms we have not

addressed the question of actually �nding the

paths themselves.

For the Floyd-Warshall algorithm this is

achieved by constructing a further sequence of

arrays P

(k)

whose (i; j) entry contains a

predecessor of j on the path from i to j. As

the entries are updated the predecessors will

change | if the matrix entry is not changed

then the predecessor does not change, but if

the entry does change, because the path

originally from i to j becomes re-routed

through the vertex k, then the predecessor of j

becomes the predecessor of j on the path from

k to j.



The A

�

algorithm

Suppose we have a robot which moves in a

2-dimensional space. Our task is to �nd the

shortest route through a cluttered landscape

from a �xed starting point to a goal position.
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A graph problem

This can easily be turned into a graph problem

| the vertices of the graph are the points of

the grid not covered by obstacles and we join

two vertices if the robot can move between

them in a single horizontal or vertical move.

In some sense, this graph is a \state-space

graph for a robot" and it is clear that we need

to �nd a shortest path from the source vertex

s to the goal vertex g in this graph.

If we regard the 2-dimensional plane on which

the robot is moving as in�nite in size, then the

graph that we (mentally) construct is also

in�nite, although we will obviously only be

explicitly considering a small part of it.



What about Dijkstra?

Dijkstra's algorithm does solve the

single-source shortest paths problem, but only

in graphs su�ciently small to be completely

examined.

The algorithm �nds shortest paths from the

source vertex s to all other vertices, making no

use of the fact that we are only interested in

the one vertex g.

In a state-space graph that may be extremely

large (for example a 1000� 1000 grid) a vast

amount of unnecessary work is done. Of

course the algorithm can be modi�ed to stop

as soon as g is reached, and we will de�nitely

have found the shortest path.

This will work and in the absence of any

further knowledge is the best that can be done.



Using estimates

The search can be dramatically improved

however if we use some additional knowledge

to concentrate the search in the more

promising areas of the graph.

One of the ways in which the search can be

improved is if we have some sort of estimate of

the distance from each vertex to the goal.

Then whenever we encounter a vertex v, we

have an estimate for the length of the shortest

path to the goal that passes through v | the

sum of the known length already travelled to v

and the estimated distance from v to the goal.

It seems natural then to examine the most

promising looking paths �rst | in other words

to give these paths a higher priority.



A priority �rst search

We formalize the above idea:

Let G be an edge-weighted graph, and let s, g

be two vertices of G. Furthermore suppose

that we have an estimating function e such

that for any vertex v, e(v; g) is an estimate of

the distance from v to g.

We conduct a version of priority-�rst search;

we will maintain arrays d and � such that d(v)

is the length of the shortest path that we have

found from s to v, and �(v) is the immediate

predecessor of v on that path.

To initialize things we set d(s) = 0 and �(s) to

be unde�ned. Then we insert the pair

(s; e(s; g)) into the priority queue.



The priority-�rst search

Then the search proceeds as follows:

� x = pq.deleteMin()

� If x = g then stop

� For each neighbour y of x compute

the value

d(x) + w(x; y)

� If this value is less than d(y) then set

d(y) to d(x) +w(x; y), set �(y) to x and

insert y into the priority queue with

priority

d(x) + w(x; y) + e(y; g):

Observe that unlike Dijkstra's algorithm, it is

conceivable that a vertex can re-enter the

priority queue even if it has been dequeued

before.



Finding optimal solutions

It is very easy to see that this algorithm does

not always �nd optimal solutions:

s/15 B/6

A/10 g/0

2 6

4

2

In this example immediately after the �rst node

s is examined, the priority queue will contain

(B;10) (A;12)

so B will be next examined, after which the

priority queue will contain

(g;10) (A;12)

and then g will be at the head of the queue, so

the algorithm will stop and declare that

s� B � g is the optimal route.



Underestimates

The problem here is that the estimate of the

remaining distance from A is such a bad

overestimate that the paths starting s� A�?

are never examined. This problem can be

completely eliminated by using an

underestimate for the estimated remaining

distance.

Theorem If e(v; g) � �(v; g) then the

procedure above is guaranteed to produce an

optimal path.

Proof At the moment that the algorithm

terminates the vertex g has the lowest priority.

Consider a true shortest path from s to g. At

every stage of the algorithm there is some

vertex v of this path on the priority queue for

which d(v) = �(s; v). The priority of this vertex

is less than or equal to �(s; g) and therefore the

priority of g is actually equal to �(s; g) and the

shortest path has been found.



More on underestimates

The quality of the search depends highly on

the quality of the underestimates. We can

consider what happens at the two extremes.

If the underestimates are exactly correct, then

the algorithm never takes a wrong step | it

simply moves directly along a true shortest

path from s to g.

If the underestimates are as bad as they can

be, (that is, every estimate for the remaining

distance is zero) then the algorithm simply

reduces to Dijkstra's algorithm.

One way to view this algorithm is that the

underestimates turn Dijkstra's algorithm into

an informed search.



The A

�

algorithm for motion planning

This priority-�rst search using underestimates

is called the A

�

algorithm.

It is primarily used in the Arti�cial Intelligence

area, because AI problems tend to involve

some state-space searching with speci�c goals.

For the motion planning problem described

above, a natural underestimate of the distance

from any point to the goal is given by the

Euclidean distance (that is, the length of a

straight line from the point to the goal,

ignoring obstacles and the fact that the robot

is constrained to move horizontally and

vertically).



Properties of A

�

Dijkstra's algorithm has the nice property that

whenever a vertex v is removed from the

priority queue we are guaranteed that

d(v) = �(s; v):

This means that once a vertex is dequeued we

never need to put it back into the queue

because a shorter path to it has been found.

Unfortunately this is not true for the A

�

algorithm as the following example shows:

s/7 D/5 E/0 g/0

A/0 B/0 C/0

2 3 2

1 2

1 2

The search proceeds s, A, B, C and then E is

dequeued when d(E) = 6, whereas �(s; E) = 5.



Monotone functions

The reason that this occurs is because the

underestimate function is badly chosen. In

particular consider the estimates for the

vertices D and E: with w(D;E) = 3 the values

e(D; g) = 5 e(E; g) = 0

seem foolish|the underestimate e(E; g) is

clearly far too low.

The underestimating function e is said to be

monotone if for all vertices x and y we have

e(x; g) � w(x; y) + e(y; g)

If the underestimating function e is monotone,

then

d(v) = �(s; v)

when v is dequeued.

The Euclidean distance underestimate function

is monotone.



An AI example

Consider the following puzzle known as the

8-puzzle (or sometimes the 9-puzzle). In its

physical form it consists of 8 plastic tiles

labelled 1, 2, : : :, 8 arranged in a 3� 3 frame.

The tiles can slide horizontally or vertically into

the empty space. The puzzle is shown in its

�nished or goal state.

7 6 5

8 4

1 2 3

The aim of the puzzle is to start with a

\random" initial con�guration and end at the

goal con�guration.

6 5

7 2 4

8 1 3

-

7 6 5

8 4

1 2 3



The state-space graph

The state-space graph of the 8-puzzle has

9! = 2� 181440 states|however only 181440

of these are in the same connected component

as the goal con�guration.

The distance of these states from the goal is

given by the following table.

Dist Number Dist Number Dist Number

1 4 2 8 3 8

4 16 5 32 6 60

7 72 8 136 9 200

10 376 11 512 12 964

13 1296 14 2368 15 3084

16 5482 17 6736 18 11132

19 12208 20 18612 21 18444

22 24968 23 19632 24 22289

25 13600 26 11842 27 4340

28 2398 29 472 30 148



An A

�

solution

The large number of intermediate states shows

that a BFS would have to have a very large

queue, and examine a large number of states.

Therefore this puzzle is an ideal application for

the A

�

algorithm.

There are two obvious underestimating

functions that can be used:

� e(S;G) = the number of tiles out of

position

� e(S;G) = the sum of the Manhattan

distances of each tile from its goal

position

Both of them will work, but the second is far

more e�cient and leads to quite quick

solutions of the A

�

puzzle. A Java applet that

solves the puzzle is on the ALG site.


